Connectivity of Random High Dimensional Geometric Graphs
نویسندگان
چکیده
We consider graphs obtained by placing n points at random on a unit sphere in R, and connecting two points by an edge if they are close to each other (e.g., the angle at the origin that their corresponding unit vectors make is at most π/3). We refer to these graphs as geometric graphs. We also consider a complement family of graphs in which two points are connected by an edge if they are far away from each other (e.g., the angle is at least 2π/3). We refer to these graphs as anti-geometric graphs. The families of graphs that we consider come up naturally in the context of semidefinite relaxations of graph optimization problems such as graph coloring. For both distributions, we show that the largest dimension for which a random graph is likely to be connected is the same (up to an additive constant) as the largest dimension for which a random graph is likely not to have isolated vertices. The phenomenon that connectivity of random graphs is tightly related to nonexistence of isolated vertices is not new, and appeared in earlier work both on nongeometric models and on other geometric models. The fact that in our model the dimension d is allowed to grow as a function of n distinguishes our results from earlier results on connectivity of random geometric graphs.
منابع مشابه
A curious gap in one-dimensional geometric random graphs between connectivity and the absence of isolated node
One-dimensional geometric random graphs are constructed by distributing n nodes uniformly and independently on a unit interval and then assigning an undirected edge between any two nodes that have a distance at most rn. These graphs have received much interest and been used in various applications including wireless networks. A threshold of rn for connectivity is known as r∗ n = lnn n in the li...
متن کاملThe distant-2 chromatic number of random proximity and random geometric graphs
We are interested in finding bounds for the distant-2 chromatic number of geometric graphs drawn from different models. We consider two undirected models of random graphs: random geometric graphs and random proximity graphs for which sharp connectivity thresholds have been shown. We are interested in a.a.s. connected graphs close just above the connectivity threshold. For such subfamilies of ra...
متن کاملPoisson convergence can yield very sharp transitions in geometric random graphs
We investigate how quickly phase transitions can occur in some geometric random graphs where n points are distributed uniformly and independently in the unit cube [0, 1] for some positive integer d. In the case of graph connectivity for the one-dimensional case, we show that the transition width behaves like n (when the number n of users is large), a significant improvement over general asympto...
متن کاملSome topological indices of graphs and some inequalities
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
متن کاملOn the zero-one law for connectivity in one-dimensional geometric random graphs
We consider the geometric random graph where n points are distributed uniformly and independently on the unit interval [0, 1]. Using the method of first and second moments, we provide a simple proof of the “zero-one” law for the property of graph connectivity under the asymptotic regime created by having n become large and the transmission range scaled appropriately with n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013